25kV 200A Deadbreak Elbow Connector Design Test Report

Report Number: Test Start Date: Test Complete Date:

RN-R7607 2014 / 10 / 09 2015 / 10 / 15

Chardon Taiwan No. 37 Min-Chie Road Tung Lo Industrial Park Miao Li, Taiwan 366

Table of Contents

1.	Partial Discharge - Deadbreak Elbow	2
	AC Withstand Voltage Test - Deadbreak Elbow	
3.	DC Withstand Voltage Test – Deadbreak Elbow	4
4.	Impulse Withstand Testing – Deadbreak Elbow	6
5.	Short-time Current Testing – Deadbreak Elbow	8
6.	Cable Pull-Out Test Deadbreak Elbow	11
7.	Operating Force Test Deadbreak Elbow	13
8.	Operating Eye Test - Deadbreak Elbow	16
	Test Point Cap Test - Deadbreak Elbow	
10.	. Test Point Test - Deadbreak Elbow	19
11.	Test Point Voltage Test - Deadbreak Elbow	20
	Shielding Test - Deadbreak Elbow	
13.	Current Cycling – Accelerated Thermal Test	24
	. Accelerated Sealing Life Test	
15.	. Current-cycling test – Thermal test with off-axis Operation	37
AP	PPENDIX -External Test Report	41

1. Partial Discharge - Deadbreak Elbow

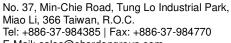
Object

To verify the connectors that the parts meet ANSI/IEEE Standard 386-2006 25kV partial discharge requirement of 19kV/3pC.

Testing Samples

Deadbreak Elbow 25-DE200TC06B 10 PCS

Mating Parts


Deadbreak Bushing 25kV 200A

Elbow Test Rod 25kV#C Testing Rod Φ22.30mm

Procedure and Testing Spec

The test voltage shall be raised to 20% above the corona voltage level of 19kV. If corona exceeds 3pC, the test voltage shall be lowered the corona voltage level of 19kV and maintained at this level for at least 3 seconds but not more than 60 seconds. Corona readings taken during this period shall not exceed 3 pC.

Sample number	Corona voltage level
A1	23 kV / 0.5 pC
A2	23 kV / 0.5 pC
A3	23 kV / 0.5 pC
A4	23 kV / 0.5 pC
A5	23 kV / 0.6 pC
A6	23 kV / 0.6 pC
A7	23 kV / 0.6 pC
A8	23 kV / 0.6 pC
A9	23 kV / 0.8 pC
A10	23 kV / 0.8 pC

E-Mail: sales@chardongroup.com

2. AC Withstand Voltage Test - Deadbreak Elbow

Object

To verify the connectors that the parts meet ANSI/IEEE standard 386-2006 25kV AC withstand requirement of 40kV/1 min.

Testing Samples

25-DE200TC06B 10 PCS Deadbreak Elbow

Mating Parts


Deadbreak Bushing 25kV 200A

Elbow Test Rod 25kV#C Testing Rod Φ22.30mm

Procedure and Testing Spec

The test voltage shall be raised to the value of 40kV in 30 seconds. The test sample shall withstand the specified test voltage for 1 minute without flashover or puncture.

Sample number	40kV/1min AC withstand voltage
A1	PASS
A2	PASS
A3	PASS
A4	PASS
A5	PASS
A6	PASS
A7	PASS
A8	PASS
A9	PASS
A10	PASS

3. DC Withstand Voltage Test - Deadbreak Elbow

Object

To verify the connectors that the parts meet the ANSI/IEEE Standard 386-2006 25kV DC withstand voltage testing spec of 78kV/15 min.

Testing Samples

Deadbreak Elbow 25-DE200TC06B 10 PCS

Mating Parts

Deadbreak Bushing 25kV 200A

Elbow Test Rod 25kV#C Testing Rod Φ22.30mm

Procedure and Testing Spec

The test voltage shall have a negative polarity and shall be raised to the value of 78kV. The connector shall withstand the specified test voltage for 15 minutes without flashover or puncture.

Sample number	-78kV/15min DC withstand voltage
A1	PASS
A2	PASS
A3	PASS
A4	PASS
A5	PASS
A6	PASS
A7	PASS
A8	PASS
A9	PASS
A10	PASS

Fig 3-1 DC Withstand Voltage Test Setup

Fig 3-2 DC Withstand Voltage Test in Progress

4. Impulse Withstand Testing - Deadbreak Elbow

Object

To verify the connectors that the parts meet ANSI/IEEE Standard 386-2006 25kV impulse withstand testing requirements of $1.2\times50\mu s\pm125kV$ wave., 3 positive and 3 negative full-wave impulses.

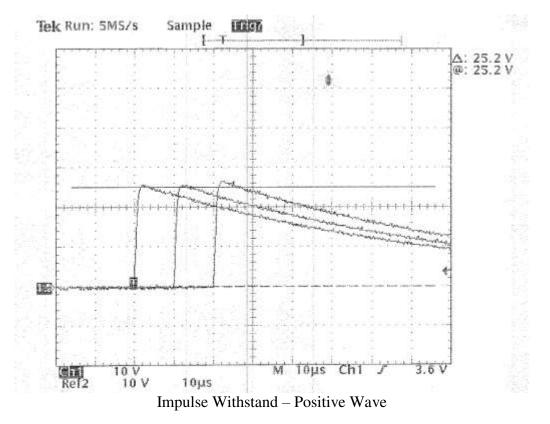
Testing Samples

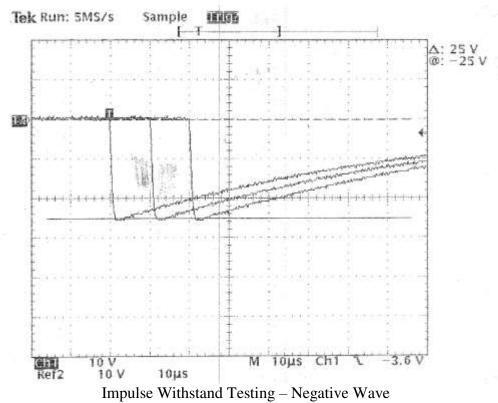
Deadbreak Elbow 25-DE200TC06B 10 PCS

Mating Parts

Deadbreak Bushing 25kV 200A

Elbow Test Rod 25kV#C Testing Rod Φ22.30mm


Procedure and Testing Spec


The test voltage shall be 1.2/50µs wave having the crest value (BIL) of 125kV. The connector shall withstand 3 positive and 3 negative full-wave impulses without flashover or puncture.

Sample number	1.2×50μs±125kV Impulse withstand voltage
A1	PASS
A2	PASS
A3	PASS
A4	PASS
A5	PASS
A6	PASS
A7	PASS
A8	PASS
A9	PASS
A10	PASS

E-Mail: sales@chardongroup.com

5. Short-time Current Testing - Deadbreak Elbow

Object

To verify the connectors that the parts meet ANSI/IEEE Standard 386-2006 200A short-time current test requirements.

Testing Samples

Deadbreak Elbow 25-DE200TC06B 4 PCS

Mating Parts

Deadbreak Bushing 25kV 200A

Cable Conductor Type 1/0 AWG(Aluminum)

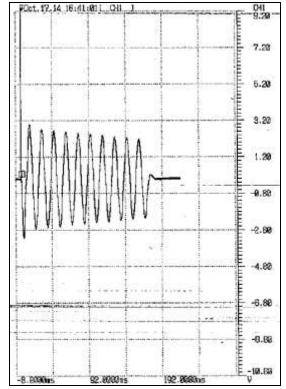
Procedure and Testing Spec

The rms value of the first major loop of a current wave shall be not less than the value specified in Table 2 multiplied by 1.3 (X/R=6) for 200 A connectors The magnitude shall be measured in accordance with ANSI/IEEE C37.09.

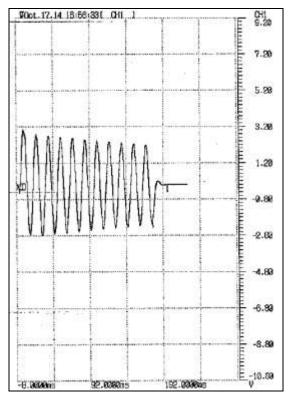
Connectors shall withstand the current without separation of interfaces or impairing the ability to meet the other requirements of the standard.

Results

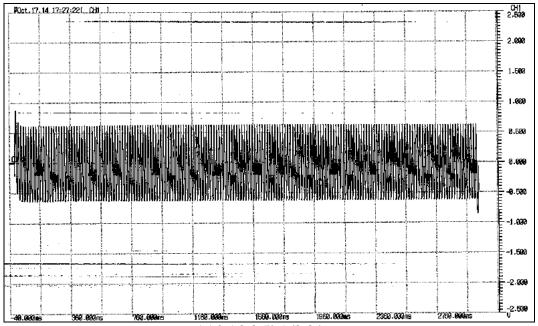
10kA/0.17sec

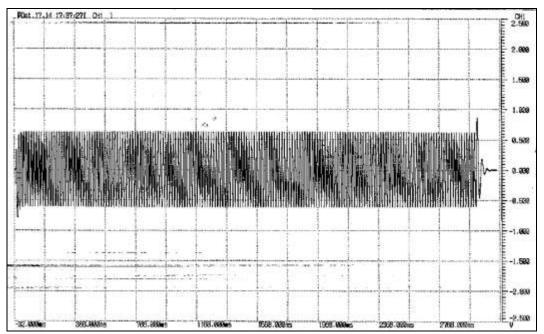

Sample number	1 st Cycle Current (peak)	1 st Cycle Current (rms)	Current (rms)	Time	Verification	Result
A11&A12	31.1kA	21.9kA	15.0kA	0.17 sec	Normal	PASS
A13&A14	30.1kA	21.3kA	15.0kA	0.18 sec	Normal	PASS

3.5kA/3sec


Sample number	1 st Cycle Current (peak)	1 st Cycle Current (rms)	Current (rms)	Time	Verification	Result
A11&A12	7.79kA	5.5kA	4.27kA	3.04 sec	Normal	PASS
A13&A14	8.71kA	6.15kA	4.3kA	3.02 sec	Normal	PASS

A11&A12 10kA/0.17sec


A13&A14 10kA/0.18sec


No. 37, Min-Chie Road, Tung Lo Industrial Park, Miao Li, 366 Taiwan, R.O.C.

Tel: +886-37-984385 | Fax: +886-37-984770

E-Mail: sales@chardongroup.com

A1&A2 3.5kA/3.04sec

B1&B2 3.5kA/3.02sec

No. 37, Min-Chie Road, Tung Lo Industrial Park, Miao Li, 366 Taiwan, R.O.C.

Tel: +886-37-984385 | Fax: +886-37-984770

E-Mail: sales@chardongroup.com

6. Cable Pull-Out Test Deadbreak Elbow

Object

To verify the compression lug and cable assembly that the parts can meet ANSI/IEEE Standard 386-2006 Cable Pull-Out Test requirements.

Testing Samples

Elbow Compression Lug 200A Bi-Metal Lug 4 PCS

Mating Parts

Cable 1/0 AWG(Aluminum)

Procedure and Testing Spec

The purpose of this test is to determine if the connection between the cable conductor and compression lug of the connector is capable of withstanding a tensile force of 890 N (200 lbf).

The compression lug shall be held in a manner that will not affect the strength of the connection. The tensile force shall be applied to the cable conductor.

The connection shall withstand the applied force for 1 minute without impairing the connector's ability to meet the other requirements of this standard.

Sample number	Measurement	Result
A1	214.28 lbf	PASS
A2	214.28 lbf	PASS
A3	213.4 lbf	PASS
A4	213.4 lbf	PASS

No. 37, Min-Chie Road, Tung Lo Industrial Park, Miao Li, 366 Taiwan, R.O.C. Tel: +886-37-984385 | Fax: +886-37-984770 E-Mail: sales@chardongroup.com

Fig 6-1 Test in Progress

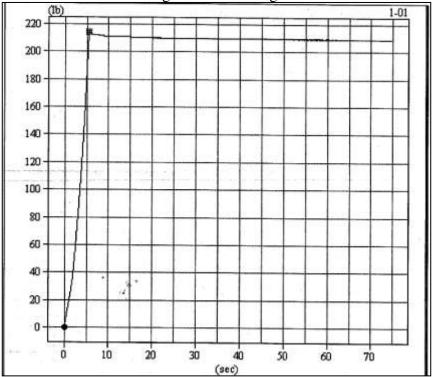


Fig 6-2 Pull Force Diagram

E-Mail: sales@chardongroup.com

7. Operating Force Test Deadbreak Elbow

Object

To verify the force of the elbow connector operating force when mating with bushing that the force meets NSI/IEEE Standard 386-2006 operating force requirement.

Testing Samples

Deadbreak Elbow 25-DE200TC06B 4 PCS

Mating Parts

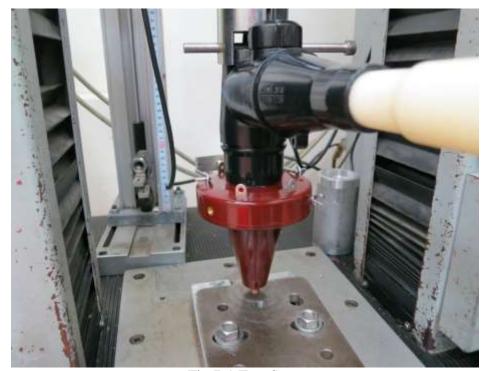
Deadbreak Bushing 25kV 200A

Elbow Test Rod 25kV#C Testing Rod Φ22.30mm

Procedure

The purpose of this test is to demonstrate that the force necessary to operate a connector meets the requirements of $6.2.(44\ N-890\ N\ (10\ lbf-200\ lbf)$ for connectors with hold-down bails)

The elbow shall be assembled with a probe and compression lug and the connector system shall be lubricated in accordance with the manufacturer's instructions.


	Sample number	Open	Close	Result
	A11	16 lbf	116 lbf	PASS
Room Temperature	A12	17 lbf	120 lbf	PASS
27°C	A13	17 lbf	133 lbf	PASS
	A14	18 lbf	128 lbf	PASS

	A11	17 lbf	120 lbf	PASS
-20 °C	A12	17 lbf	129 lbf	PASS
-20 (A13	18 lbf	132 lbf	PASS
	A14	19 lbf	131 lbf	PASS

	A11	16 lbf	114 lbf	PASS
65 °C	A12	16 lbf	117 lbf	PASS
63 (A13	17 lbf	128 lbf	PASS
	A14	17 lbf	125 lbf	PASS

No. 37, Min-Chie Road, Tung Lo Industrial Park, Miao Li, 366 Taiwan, R.O.C. Tel: +886-37-984385 | Fax: +886-37-984770 E-Mail: sales@chardongroup.com

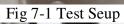


Fig 7-2 Testing in Progress

No. 37, Min-Chie Road, Tung Lo Industrial Park, Miao Li, 366 Taiwan, R.O.C.

Tel: +886-37-984385 | Fax: +886-37-984770 E-Mail: sales@chardongroup.com

8. Operating Eye Test - Deadbreak Elbow

Object

To verify the elbow operating eye that the part meet ANSI/IEEE Standard 386-2006 requirements.

Testing Samples

Deadbreak Elbow

25-DE200TC06B

4 PCS

Mating Parts

Testing Fixture

Procedure and Testing Spec

The purpose of this test is to demonstrate that the operating eye meets the requirements of 6.2 at $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$.

A tensile force shall be gradually applied to the operating eye in the direction of normal operation. The operating eye shall withstand the force for 1 minute.

A rotational force shall be applied with a suitable live-line tool to the operating eye in a clockwise direction and in a counter-clockwise direction.

Some distortion of the operating eye is acceptable provided the connector is serviceable after the test and meets the corona voltage-level requirement specified in Table 1 of IEEE standard 386-2006.

Sample number	500 lbf /min	120 lbf-in rotational force	PD Test
A11	PASS	PASS	23 kV / 1.9 pC
A12	PASS	PASS	23 kV / 0.9 pC
A13	PASS	PASS	23 kV / 1.6 pC
A14	PASS	PASS	23 kV / 0.8 pC

E-Mail: sales@chardongroup.com

9. Test Point Cap Test - Deadbreak Elbow

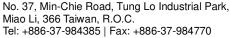
Object

To verify the test point cap of the elbow that the part meets ANSI/IEEE Standard 386-2006 requirement.

Testing Samples

Deadbreak Elbow	25-DE200TC06B	4 PCS
Test Point Cap		4 PCS

Testing Fixture


Procedure and Testing Spec

The purpose of this test is to demonstrate that the removal force of the test point cap meets the requirements of 6.5.2 and the cap operating eye is capable of withstanding the maximum operating force

		1	1	1	
	Sample number	Pull Force	100 lbf Pulling	Result	
	Sample number	(8 lbf – 49 lbf)	100 lot Fulling	Result	
	A11	19.80 lbf	PASS	PASS	
Room Temperature	A12	24.64 lbf	PASS	PASS	
27°C	A13	20.68 lbf	PASS	PASS	
	A14	25.08 lbf	PASS	PASS	
	A11	22.43 lbf	PASS	PASS	
20. °C	A12	25.33 lbf	PASS	PASS	
-20 °C	A13	23.47 lbf	PASS	PASS	
	A14	27.56 lbf	PASS	PASS	
	A11	19.65 lbf	PASS	PASS	
65 °C	A12	22.38 lbf	PASS	PASS	
65 (A13	20.22 lbf	PASS	PASS	
	A14	24.71 lbf	PASS	PASS	

Tel: +886-37-984385 | Fax: +886-37-9847 E-Mail: sales@chardongroup.com

10. Test Point Test - Deadbreak Elbow

Object

To verify the elbow test point meeting the ANSI/IEEE Standard 386-2006 testing requirement.

Testing Samples

Deadbreak Elbow 25-DE200TC06B 10 PCS

Mating Parts

LCR Meter Delta united instrument DU-6021

Testing Fixture

Procedure and Testing Spec

The purpose of this test is to verify that the capacitance values of the test point meet the requirements of 6.5.1. of IEEE 386.

The connector shall be installed on a cable of the type for which it is designed to operate, and the shielding shall be grounded in the normal manner. The capacitances from test point to cable and test point to ground shall be measured with suitable instruments and proper shielding techniques. The measured values shall be within the tolerances specified in 6.5.1. of IEEE 386.

Sample number	Test point and the conductor shall be at least 1.0 pF.	Test point and shield to the capacitance between test point and conductor shall not exceed 12.0	Result
A1	7.48 pF	1.29	PASS
A2	7.60 pF	1.34	PASS
A3	7.72 pF	1.25	PASS
A4	7.51 pF	1.24	PASS
A5	7.86 pF	1.27	PASS
A6	7.64 pF	1.28	PASS
A7	7.75 pF	1.31	PASS
A8	7.92 pF	1.24	PASS
A9	7.69 pF	1.29	PASS
A10	7.71 pF	1.35	PASS

11. Test Point Voltage Test - Deadbreak Elbow

Object

To verify the elbow test point Voltage meeting the ANSI/IEEE Standard 386-2006 testing requirement.

Testing Samples

Deadbreak Elbow 25-DE200TC06B 10 PCS

Mating Parts

Deadbreak Bushing 25kV 200A

Elbow Test Rod 25kV#C Testing Rod Φ22.30mm

Hi-ZTM Portable HV AC Voltmeter

Procedure and Testing Spec

A test voltage shall be applied to the conductor system of the connector. The response of a suitable sensing device on the test point shall indicate an energized condition.

Sample number	Test Point Voltage Testing is applied with 15.0kV	Result
A1	12 kV	PASS
A2	12 kV	PASS
A3	12 kV	PASS
A4	12 kV	PASS
A5	12 kV	PASS
A6	11.5 kV	PASS
A7	12 kV	PASS
A8	12 kV	PASS
A9	11.5 kV	PASS
A10	12 kV	PASS

No. 37, Min-Chie Road, Tung Lo Industrial Park, Miao Li, 366 Taiwan, R.O.C.
Tel: +886-37-984385 | Fax: +886-37-984770
E-Mail: sales@chardongroup.com

12. Shielding Test - Deadbreak Elbow

Object

To verify the outer conductive layer of the connector that the material meet ANSI/IEEE Standard 386-2006 requirement of shielding test

Testing Samples

Elbow 25-DE200TC06B 4 PCS

Mating Parts

LCR Meter Delta united instrument DU-6021

Procedure

- 1. *Shield Resistance*. The shield resistance measured between the cable entrance and the farthest extremity of the shield from the cable entrance shall be 5000Ω or less.
- 2. Fault-Current Initiation. The semi-conducting shield shall be capable of initiating two consecutive fault-current arcs to ground specified in 4.3, IEEE 592.

Results

1. Shield Resistance

Temperature	Sample number	5000Ω max	Result
	A11	1000Ω	PASS
27 °C	A12	1101Ω	PASS
27 (A13	1142Ω	PASS
	A14	1053 Ω	PASS

Temperature	Sample number	5000Ω max	Result
	A11	1145Ω	PASS
90 ℃	A12	1326Ω	PASS
90 (A13	1467Ω	PASS
	A14	1259Ω	PASS

E-Mail: sales@chardongroup.com

Temperature	Sample number	5000 Ω max	Result
	A11	1144Ω	PASS
27 ℃	A12	1208Ω	PASS
(Air oven aged for 504 h at 121 °C)	A13	1232Ω	PASS
	A14	1159Ω	PASS

Temperature	Sample number	5000Ω max	Result
	A11	1215Ω	PASS
28 ℃	A12	1371 Ω	PASS
(Air oven aged for 504 h at 121 °C)	A13	1582Ω	PASS
	A14	1296Ω	PASS

^{2.} Fault-Current Initiation: The outer conductive layers of deadbreak elbow are using the same material with Chardon 25kV Loadbreak Elbow. 2 Chardon Loadbreak Elbows samples successfully initiate two consecutive fault-current arcs to ground in the test performed in Powertech Labs, Surrey, B.C., Canada. All 2 samples passed. Powertech Test Report № PL-26015B. See APPENDIX.

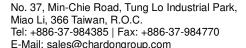

E-Mail: sales@chardongroup.com

Fig 12-1 Testing in Progress

Fig 12-2 Test Readings

13. Current Cycling - Accelerated Thermal Test

Object

The purpose of this accelerated test is to demonstrate that 200 A insulated connectors can carry rated current under usual service conditions. Successful completion of the test shall be considered as evidence that the connector meets its rating.

Testing Samples and Mating Parts

Elbow CHARDON 25-DE200T 4 PCS

Bushing CHARDON 24-DIB250 4 PCS

Mating Parts

Cable Conductor Type 1/0 AWG(Aluminum)

Cable Insulation Thickness 220 mil

Conductor 200A Bi-Metal Lug

Equalizers Aluminum Equalizers Size:

106mm(L)20mm(OD)10.1mm(ID)

Bushing Bus 356mm(L), 102mm(W),10mm(T)

Testing Spec

A control cable, used for the purpose of obtaining conductor temperature, shall be installed in the heat cycle loop between two equalizers. Its length shall be 183 cm (72 in). The control cable shall be the same type and size as the cable used to join the connectors under test.

Four connectors shall be assembled in series on AWG No 1/0 insulated aluminum conductors having a length of 91 cm (36 in). The cable insulation thickness shall be selected according to its voltage class (see Table 10 of IEEE 386). Equalizers used shall be in accordance with ANSI C119.4. The bushing bus shall be a flat, rectangular, bus bar 356 mm (14 in) long, 102 mm (4 in) wide, and 10 mm (3/8 in) thick. The bushing wells shall be mounted 31 cm (12 in) apart centered along the midline of the bus bar. The bushing well studs shall be tightened to the bus bar using an installation torque of $9 \text{ N} \cdot \text{m} \pm 1 \text{ N} \cdot \text{m}$ (80 lbf·in $\pm 10 \text{ lbf} \cdot \text{in}$).

E-Mail: sales@chardongroup.com

Unless otherwise specified by the manufacturers, the elbow male contact probe shall be threaded into the elbow compression lug using an installation torque of $9 \text{ N} \cdot \text{m} \pm 1 \text{ N} \cdot \text{m}$ (80 lbf·in \pm 10 lbf·in).

Current-cycling tests shall be conducted at an ambient temperature of 15 °C to 35 °C in a space free of drafts.

The current-cycle amperes shall be adjusted during the current-on period of the first five cycles to result in a steady-state temperature rise of 100 °C to 105 °C on the control conductor. This current shall then be used during the remainder of the test current-on periods, regardless of the temperature of the control conductor.

The test shall consist of 50 current cycles, with the current on 4 h and off 2 h for each cycle. At the end of each current-on cycle, the assembly shall be de-energized and within 3 min be submerged in water at 5 °C \pm 5 °C for the remainder of the current-off cycle. At the end of the 10th, 25th and 40th cycles (\pm 2 cycles), after the samples have returned to room temperature, a short time ac current of 3500 A \pm 300 A rms shall be applied to each sample for a minimum of 3 s.

The temperature of at least the following current transfer points shall be measured at the end of each cycle with the current on:

- a) Probe to compression lug
- b) Probe to female contact
- c) Female contact structure to metallic housing (piston contact)
- d) Between bushing insert and bushing well.

These temperatures shall not exceed the temperature of the control conductor.

The temperature differences between the control conductor and the connector shall show a condition of stability from the fifth cycle to the end of the test. Stability is indicated when the change in the individual differences is not more than 10 °C from the average of the measured differences in this interval for this connector.

The dc resistance of the connector system shall be measured at the end of cycles 10, 20, 30, 40, and $50 \pm 2 \pm 2 \pm 3$. The dc resistance measurements shall be made between the elbow cable equalizer and the bushing stud after the connector system has stabilized at ambient temperature. Ambient temperature shall be measured by devices located within 61 cm (2 ft.) of the test loop but in a location that minimizes the effect of thermal convection. The ambient temperature shall be recorded at the same time as each set of resistance measurements, and the resistance shall be corrected to 20 °C. The dc resistance shall be stable over the period of measurement. Stability is achieved when any resistance measurement, including allowance for instrument accuracy, does not vary more than $\pm 5\%$ from the average of all the measurements in this interval.

E-Mail: sales@chardongroup.com

Results

Temperature Sensor Area : a-compression lug/ probe b-probe/louver contact

Unit °C

Cycle# A I S												Unit
a. b. a. b. a. b. a. b. a. b. c. c.<	Cyala#	A	15	A	16	A	17	A	18	aabla	Room	Water
7 57.3 46.3 56.1 47.2 58.7 49.2 52.3 47.9 101.5 23.9 7.3 8 58.2 46.8 57.2 46.9 59.5 48.7 54.6 48.7 101.1 22.1 7.9 9 58.6 47.2 57.5 47.1 59.9 47.6 53.2 48.1 100.7 27.3 8.2 10 57.9 46.2 56.4 46.7 59.3 47.9 53.2 47.6 101.3 25.9 7.8 11 59.1 48.1 58.3 47.1 59.1 47.1 52.9 47.8 101.0 23.5 7.3 12 58.8 47.8 57.4 45.8 58.3 47.2 54.6 47.7 100.8 24.8 7.5 13 57.4 46.1 56.1 49.9 58.5 46.9 53.6 48.7 101.4 23.1 8.0 14 57.7 46.5	Cycle#	a.	b.	a.	b.	a.	b.	a.	b.	cable	Temp	Temp
8 58.2 46.8 57.2 46.9 59.5 48.7 54.6 48.7 101.1 22.1 7.9 9 58.6 47.2 57.5 47.1 59.9 47.6 53.2 48.1 100.7 27.3 8.2 10 57.9 46.2 56.4 46.7 59.3 47.9 53.2 47.6 101.3 25.9 7.8 11 59.1 48.1 58.3 47.1 59.1 47.1 52.9 47.8 101.0 23.5 7.3 12 58.8 47.8 57.4 45.8 58.3 47.2 54.6 47.7 100.8 24.8 7.5 13 57.4 46.1 56.1 49.9 58.5 46.9 53.6 48.5 101.9 27.3 7.9 14 57.7 46.5 56.3 47.4 57.4 46.6 53.9 47.3 101.4 23.1 8.0 15 58.6 47.7	6	59.2	48.5	58.9	49.1	58.4	49.3	53.1	48.9	101.2	25.1	7.0
9 58.6 47.2 57.5 47.1 59.9 47.6 53.2 48.1 100.7 27.3 8.2 10 57.9 46.2 56.4 46.7 59.3 47.9 53.2 47.6 101.3 25.9 7.8 11 59.1 48.1 58.3 47.1 59.1 47.1 52.9 47.8 101.0 23.5 7.3 12 58.8 47.8 57.4 45.8 58.3 47.2 54.6 47.7 100.8 24.8 7.5 13 57.4 46.1 56.1 49.9 58.5 46.9 53.6 48.5 101.9 27.3 7.9 14 57.7 46.5 56.3 47.4 57.4 46.6 53.9 47.3 101.4 23.1 8.0 15 58.6 47.7 57.2 48.1 59.3 46.9 54.4 47.9 102.1 21.9 7.7 16 57.3 46.4	7	57.3	46.3	56.1	47.2	58.7	49.2	52.3	47.9	101.5	23.9	7.3
10 57.9 46.2 56.4 46.7 59.3 47.9 53.2 47.6 101.3 25.9 7.8 11 59.1 48.1 58.3 47.1 59.1 47.1 52.9 47.8 101.0 23.5 7.3 12 58.8 47.8 57.4 45.8 58.3 47.2 54.6 47.7 100.8 24.8 7.5 13 57.4 46.1 56.1 49.9 58.5 46.9 53.6 48.5 101.9 27.3 7.9 14 57.7 46.5 56.3 47.4 57.4 46.6 53.9 47.3 101.4 23.1 8.0 15 58.6 47.7 57.2 48.1 59.3 46.9 54.4 47.9 102.1 21.9 7.7 16 57.3 46.4 55.9 45.8 57.1 45.8 52.5 48.3 101.6 25.1 7.4 17 59.4 49.0	8	58.2	46.8	57.2	46.9	59.5	48.7	54.6	48.7	101.1	22.1	7.9
11 59.1 48.1 58.3 47.1 59.1 47.1 52.9 47.8 101.0 23.5 7.3 12 58.8 47.8 57.4 45.8 58.3 47.2 54.6 47.7 100.8 24.8 7.5 13 57.4 46.1 56.1 49.9 58.5 46.9 53.6 48.5 101.9 27.3 7.9 14 57.7 46.5 56.3 47.4 57.4 46.6 53.9 47.3 101.4 23.1 8.0 15 58.6 47.7 57.2 48.1 59.3 46.9 54.4 47.9 102.1 21.9 7.7 16 57.3 46.4 55.9 45.8 57.1 45.8 52.5 48.3 101.6 25.1 7.4 17 59.4 49.0 57.8 47.6 59.2 47.2 54.3 48.1 101.2 29.4 7.1 18 60.1 49.2	9	58.6	47.2	57.5	47.1	59.9	47.6	53.2	48.1	100.7	27.3	8.2
12 58.8 47.8 57.4 45.8 58.3 47.2 54.6 47.7 100.8 24.8 7.5 13 57.4 46.1 56.1 49.9 58.5 46.9 53.6 48.5 101.9 27.3 7.9 14 57.7 46.5 56.3 47.4 57.4 46.6 53.9 47.3 101.4 23.1 8.0 15 58.6 47.7 57.2 48.1 59.3 46.9 54.4 47.9 102.1 21.9 7.7 16 57.3 46.4 55.9 45.8 57.1 45.8 52.5 48.3 101.6 25.1 7.4 17 59.4 49.0 57.8 47.6 59.2 47.2 54.3 48.1 101.2 29.4 7.1 18 60.1 49.2 57.2 46.9 58.9 46.1 55.9 47.7 100.9 26.9 7.3 19 58.5 48.5	10	57.9	46.2	56.4	46.7	59.3	47.9	53.2	47.6	101.3	25.9	7.8
13 57.4 46.1 56.1 49.9 58.5 46.9 53.6 48.5 101.9 27.3 7.9 14 57.7 46.5 56.3 47.4 57.4 46.6 53.9 47.3 101.4 23.1 8.0 15 58.6 47.7 57.2 48.1 59.3 46.9 54.4 47.9 102.1 21.9 7.7 16 57.3 46.4 55.9 45.8 57.1 45.8 52.5 48.3 101.6 25.1 7.4 17 59.4 49.0 57.8 47.6 59.2 47.2 54.3 48.1 101.2 29.4 7.1 18 60.1 49.2 57.2 46.9 58.9 46.1 55.9 47.7 100.9 26.9 7.3 19 58.5 48.5 58.1 46.5 58.5 46.8 56.2 47.5 101.1 24.1 7.5 20 58.1 48.6	11	59.1	48.1	58.3	47.1	59.1	47.1	52.9	47.8	101.0	23.5	7.3
14 57.7 46.5 56.3 47.4 57.4 46.6 53.9 47.3 101.4 23.1 8.0 15 58.6 47.7 57.2 48.1 59.3 46.9 54.4 47.9 102.1 21.9 7.7 16 57.3 46.4 55.9 45.8 57.1 45.8 52.5 48.3 101.6 25.1 7.4 17 59.4 49.0 57.8 47.6 59.2 47.2 54.3 48.1 101.2 29.4 7.1 18 60.1 49.2 57.2 46.9 58.9 46.1 55.9 47.7 100.9 26.9 7.3 19 58.5 48.5 58.1 46.5 58.5 46.8 56.2 47.5 101.1 24.1 7.5 20 58.1 48.6 59.0 49.1 58.7 48.7 57.8 49.7 100.7 32.2 7.6 21 58.9 49.1	12	58.8	47.8	57.4	45.8	58.3	47.2	54.6	47.7	100.8	24.8	7.5
15 58.6 47.7 57.2 48.1 59.3 46.9 54.4 47.9 102.1 21.9 7.7 16 57.3 46.4 55.9 45.8 57.1 45.8 52.5 48.3 101.6 25.1 7.4 17 59.4 49.0 57.8 47.6 59.2 47.2 54.3 48.1 101.2 29.4 7.1 18 60.1 49.2 57.2 46.9 58.9 46.1 55.9 47.7 100.9 26.9 7.3 19 58.5 48.5 58.1 46.5 58.5 46.8 56.2 47.5 101.1 24.1 7.5 20 58.1 48.6 59.0 49.1 58.5 46.8 56.2 47.5 100.7 32.2 7.6 21 58.9 49.1 57.5 45.1 57.5 48.5 54.6 48.6 102.5 28.5 7.8 22 59.3 48.8	13	57.4	46.1	56.1	49.9	58.5	46.9	53.6	48.5	101.9	27.3	7.9
16 57.3 46.4 55.9 45.8 57.1 45.8 52.5 48.3 101.6 25.1 7.4 17 59.4 49.0 57.8 47.6 59.2 47.2 54.3 48.1 101.2 29.4 7.1 18 60.1 49.2 57.2 46.9 58.9 46.1 55.9 47.7 100.9 26.9 7.3 19 58.5 48.5 58.1 46.5 58.5 46.8 56.2 47.5 101.1 24.1 7.5 20 58.1 48.6 59.0 49.1 58.7 48.7 57.8 49.7 100.7 32.2 7.6 21 58.9 49.1 57.5 45.1 57.5 48.5 54.6 48.6 102.5 28.5 7.8 22 59.3 48.8 57.9 44.7 57.3 48.8 53.3 47.3 101.7 25.3 8.2 23 57.5 47.2	14	57.7	46.5	56.3	47.4	57.4	46.6	53.9	47.3	101.4	23.1	8.0
17 59.4 49.0 57.8 47.6 59.2 47.2 54.3 48.1 101.2 29.4 7.1 18 60.1 49.2 57.2 46.9 58.9 46.1 55.9 47.7 100.9 26.9 7.3 19 58.5 48.5 58.1 46.5 58.5 46.8 56.2 47.5 101.1 24.1 7.5 20 58.1 48.6 59.0 49.1 58.7 48.7 57.8 49.7 100.7 32.2 7.6 21 58.9 49.1 57.5 45.1 57.5 48.5 54.6 48.6 102.5 28.5 7.8 22 59.3 48.8 57.9 44.7 57.3 48.8 53.3 47.3 101.7 25.3 8.2 23 57.5 47.2 56.2 43.9 58.6 49.1 54.5 47.6 102.2 24.4 7.9 24 60.2 50.2	15	58.6	47.7	57.2	48.1	59.3	46.9	54.4	47.9	102.1	21.9	7.7
18 60.1 49.2 57.2 46.9 58.9 46.1 55.9 47.7 100.9 26.9 7.3 19 58.5 48.5 58.1 46.5 58.5 46.8 56.2 47.5 101.1 24.1 7.5 20 58.1 48.6 59.0 49.1 58.7 48.7 57.8 49.7 100.7 32.2 7.6 21 58.9 49.1 57.5 45.1 57.5 48.5 54.6 48.6 102.5 28.5 7.8 22 59.3 48.8 57.9 44.7 57.3 48.8 53.3 47.3 101.7 25.3 8.2 23 57.5 47.2 56.2 43.9 58.6 49.1 54.5 47.6 102.2 24.4 7.9 24 60.2 50.2 58.1 45.9 59.4 49.7 54.2 48.2 101.8 29.4 7.6 25 61.5 51.1	16	57.3	46.4	55.9	45.8	57.1	45.8	52.5	48.3	101.6	25.1	7.4
19 58.5 48.5 58.1 46.5 58.5 46.8 56.2 47.5 101.1 24.1 7.5 20 58.1 48.6 59.0 49.1 58.7 48.7 57.8 49.7 100.7 32.2 7.6 21 58.9 49.1 57.5 45.1 57.5 48.5 54.6 48.6 102.5 28.5 7.8 22 59.3 48.8 57.9 44.7 57.3 48.8 53.3 47.3 101.7 25.3 8.2 23 57.5 47.2 56.2 43.9 58.6 49.1 54.5 47.6 102.2 24.4 7.9 24 60.2 50.2 58.1 45.9 59.4 49.7 54.2 48.2 101.8 29.4 7.6 25 61.5 51.1 56.9 44.7 58.8 48.9 52.8 47.2 101.6 27.2 7.2 26 60.7 49.8	17	59.4	49.0	57.8	47.6	59.2	47.2	54.3	48.1	101.2	29.4	7.1
20 58.1 48.6 59.0 49.1 58.7 48.7 57.8 49.7 100.7 32.2 7.6 21 58.9 49.1 57.5 45.1 57.5 48.5 54.6 48.6 102.5 28.5 7.8 22 59.3 48.8 57.9 44.7 57.3 48.8 53.3 47.3 101.7 25.3 8.2 23 57.5 47.2 56.2 43.9 58.6 49.1 54.5 47.6 102.2 24.4 7.9 24 60.2 50.2 58.1 45.9 59.4 49.7 54.2 48.2 101.8 29.4 7.6 25 61.5 51.1 56.9 44.7 58.8 48.9 52.8 47.2 101.6 27.2 7.2 26 60.7 49.8 57.0 45.3 59.8 47.7 51.2 47.4 102.3 24.5 7.4 27 59.2 49.4	18	60.1	49.2	57.2	46.9	58.9	46.1	55.9	47.7	100.9	26.9	7.3
21 58.9 49.1 57.5 45.1 57.5 48.5 54.6 48.6 102.5 28.5 7.8 22 59.3 48.8 57.9 44.7 57.3 48.8 53.3 47.3 101.7 25.3 8.2 23 57.5 47.2 56.2 43.9 58.6 49.1 54.5 47.6 102.2 24.4 7.9 24 60.2 50.2 58.1 45.9 59.4 49.7 54.2 48.2 101.8 29.4 7.6 25 61.5 51.1 56.9 44.7 58.8 48.9 52.8 47.2 101.6 27.2 7.2 26 60.7 49.8 57.0 45.3 59.8 47.7 51.2 47.4 102.3 24.5 7.4 27 59.2 49.4 58.3 46.6 58.3 48.1 53.8 46.9 102.0 27.5 7.8 28 58.6 48.7	19	58.5	48.5	58.1	46.5	58.5	46.8	56.2	47.5	101.1	24.1	7.5
22 59.3 48.8 57.9 44.7 57.3 48.8 53.3 47.3 101.7 25.3 8.2 23 57.5 47.2 56.2 43.9 58.6 49.1 54.5 47.6 102.2 24.4 7.9 24 60.2 50.2 58.1 45.9 59.4 49.7 54.2 48.2 101.8 29.4 7.6 25 61.5 51.1 56.9 44.7 58.8 48.9 52.8 47.2 101.6 27.2 7.2 26 60.7 49.8 57.0 45.3 59.8 47.7 51.2 47.4 102.3 24.5 7.4 27 59.2 49.4 58.3 46.6 58.3 48.1 53.8 46.9 102.0 27.5 7.8 28 58.6 48.7 57.6 46.2 59.6 49.2 54.8 47.7 101.9 30.3 8.1 29 58.2 48.5 59.2 46.9 57.5 48.2 54.7 47.4 102.1 26.5 7.6 30 57.9 48.1 56.4 46.3 57.8 49.4 53.4 47.3 102.2 23.4	20	58.1	48.6	59.0	49.1	58.7	48.7	57.8	49.7	100.7	32.2	7.6
23 57.5 47.2 56.2 43.9 58.6 49.1 54.5 47.6 102.2 24.4 7.9 24 60.2 50.2 58.1 45.9 59.4 49.7 54.2 48.2 101.8 29.4 7.6 25 61.5 51.1 56.9 44.7 58.8 48.9 52.8 47.2 101.6 27.2 7.2 26 60.7 49.8 57.0 45.3 59.8 47.7 51.2 47.4 102.3 24.5 7.4 27 59.2 49.4 58.3 46.6 58.3 48.1 53.8 46.9 102.0 27.5 7.8 28 58.6 48.7 57.6 46.2 59.6 49.2 54.8 47.7 101.9 30.3 8.1 29 58.2 48.5 59.2 46.9 57.5 48.2 54.7 47.4 102.1 26.5 7.6 30 57.9 48.1 56.4 46.3 57.8 49.4 53.4 47.3 102.2 23.4 <	21	58.9	49.1	57.5	45.1	57.5	48.5	54.6	48.6	102.5	28.5	7.8
24 60.2 50.2 58.1 45.9 59.4 49.7 54.2 48.2 101.8 29.4 7.6 25 61.5 51.1 56.9 44.7 58.8 48.9 52.8 47.2 101.6 27.2 7.2 26 60.7 49.8 57.0 45.3 59.8 47.7 51.2 47.4 102.3 24.5 7.4 27 59.2 49.4 58.3 46.6 58.3 48.1 53.8 46.9 102.0 27.5 7.8 28 58.6 48.7 57.6 46.2 59.6 49.2 54.8 47.7 101.9 30.3 8.1 29 58.2 48.5 59.2 46.9 57.5 48.2 54.7 47.4 102.1 26.5 7.6 30 57.9 48.1 56.4 46.3 57.8 49.4 53.4 47.3 102.2 23.4 7.9 31 58.4 48.6 58.1 47.2 58.1 49.2 54.9 46.9 101.8 24.1 <	22	59.3	48.8	57.9	44.7	57.3	48.8	53.3	47.3	101.7	25.3	8.2
25 61.5 51.1 56.9 44.7 58.8 48.9 52.8 47.2 101.6 27.2 7.2 26 60.7 49.8 57.0 45.3 59.8 47.7 51.2 47.4 102.3 24.5 7.4 27 59.2 49.4 58.3 46.6 58.3 48.1 53.8 46.9 102.0 27.5 7.8 28 58.6 48.7 57.6 46.2 59.6 49.2 54.8 47.7 101.9 30.3 8.1 29 58.2 48.5 59.2 46.9 57.5 48.2 54.7 47.4 102.1 26.5 7.6 30 57.9 48.1 56.4 46.3 57.8 49.4 53.4 47.3 102.2 23.4 7.9 31 58.4 48.6 58.1 47.2 58.1 49.2 54.9 46.9 101.8 24.1 7.5 32 59.3 49.0 58.4 47.3 59.2 49.9 53.5 46.4 102.1 29.7 7.3 33 58.1 48.6 57.9 46.8 57.9 48.5 52.4 44.9 102.3 27.1	23	57.5	47.2	56.2	43.9	58.6	49.1	54.5	47.6	102.2	24.4	7.9
26 60.7 49.8 57.0 45.3 59.8 47.7 51.2 47.4 102.3 24.5 7.4 27 59.2 49.4 58.3 46.6 58.3 48.1 53.8 46.9 102.0 27.5 7.8 28 58.6 48.7 57.6 46.2 59.6 49.2 54.8 47.7 101.9 30.3 8.1 29 58.2 48.5 59.2 46.9 57.5 48.2 54.7 47.4 102.1 26.5 7.6 30 57.9 48.1 56.4 46.3 57.8 49.4 53.4 47.3 102.2 23.4 7.9 31 58.4 48.6 58.1 47.2 58.1 49.2 54.9 46.9 101.8 24.1 7.5 32 59.3 49.0 58.4 47.3 59.2 49.9 53.5 46.4 102.1 29.7 7.3 33 58.1 48.6 57.9 46.8 57.9 48.5 52.4 44.9 102.3 27.1 <	24	60.2	50.2	58.1	45.9	59.4	49.7	54.2	48.2	101.8	29.4	7.6
27 59.2 49.4 58.3 46.6 58.3 48.1 53.8 46.9 102.0 27.5 7.8 28 58.6 48.7 57.6 46.2 59.6 49.2 54.8 47.7 101.9 30.3 8.1 29 58.2 48.5 59.2 46.9 57.5 48.2 54.7 47.4 102.1 26.5 7.6 30 57.9 48.1 56.4 46.3 57.8 49.4 53.4 47.3 102.2 23.4 7.9 31 58.4 48.6 58.1 47.2 58.1 49.2 54.9 46.9 101.8 24.1 7.5 32 59.3 49.0 58.4 47.3 59.2 49.9 53.5 46.4 102.1 29.7 7.3 33 58.1 48.6 57.9 46.8 57.9 48.5 52.4 44.9 102.3 27.1 7.7 34 54.3 44.4 58.3 47.0 57.1 44.2 49.3 43.4 101.3 23.1 7.8 35 59.2 46.8 58.2 47.6 57.8 46.5 49.2 44.6 101.8 24.3	25	61.5	51.1	56.9	44.7	58.8	48.9	52.8	47.2	101.6	27.2	7.2
28 58.6 48.7 57.6 46.2 59.6 49.2 54.8 47.7 101.9 30.3 8.1 29 58.2 48.5 59.2 46.9 57.5 48.2 54.7 47.4 102.1 26.5 7.6 30 57.9 48.1 56.4 46.3 57.8 49.4 53.4 47.3 102.2 23.4 7.9 31 58.4 48.6 58.1 47.2 58.1 49.2 54.9 46.9 101.8 24.1 7.5 32 59.3 49.0 58.4 47.3 59.2 49.9 53.5 46.4 102.1 29.7 7.3 33 58.1 48.6 57.9 46.8 57.9 48.5 52.4 44.9 102.3 27.1 7.7 34 54.3 44.4 58.3 47.0 57.1 44.2 49.3 43.4 101.3 23.1 7.8 35 59.2 46.8 58.2 47.6 57.8 46.5 49.2 44.6 101.8 24.3 8.1	26	60.7	49.8	57.0	45.3	59.8	47.7	51.2	47.4	102.3	24.5	7.4
29 58.2 48.5 59.2 46.9 57.5 48.2 54.7 47.4 102.1 26.5 7.6 30 57.9 48.1 56.4 46.3 57.8 49.4 53.4 47.3 102.2 23.4 7.9 31 58.4 48.6 58.1 47.2 58.1 49.2 54.9 46.9 101.8 24.1 7.5 32 59.3 49.0 58.4 47.3 59.2 49.9 53.5 46.4 102.1 29.7 7.3 33 58.1 48.6 57.9 46.8 57.9 48.5 52.4 44.9 102.3 27.1 7.7 34 54.3 44.4 58.3 47.0 57.1 44.2 49.3 43.4 101.3 23.1 7.8 35 59.2 46.8 58.2 47.6 57.8 46.5 49.2 44.6 101.8 24.3 8.1	27	59.2	49.4	58.3	46.6	58.3	48.1	53.8	46.9	102.0	27.5	7.8
30 57.9 48.1 56.4 46.3 57.8 49.4 53.4 47.3 102.2 23.4 7.9 31 58.4 48.6 58.1 47.2 58.1 49.2 54.9 46.9 101.8 24.1 7.5 32 59.3 49.0 58.4 47.3 59.2 49.9 53.5 46.4 102.1 29.7 7.3 33 58.1 48.6 57.9 46.8 57.9 48.5 52.4 44.9 102.3 27.1 7.7 34 54.3 44.4 58.3 47.0 57.1 44.2 49.3 43.4 101.3 23.1 7.8 35 59.2 46.8 58.2 47.6 57.8 46.5 49.2 44.6 101.8 24.3 8.1	28	58.6	48.7	57.6	46.2	59.6	49.2	54.8	47.7	101.9	30.3	8.1
31 58.4 48.6 58.1 47.2 58.1 49.2 54.9 46.9 101.8 24.1 7.5 32 59.3 49.0 58.4 47.3 59.2 49.9 53.5 46.4 102.1 29.7 7.3 33 58.1 48.6 57.9 46.8 57.9 48.5 52.4 44.9 102.3 27.1 7.7 34 54.3 44.4 58.3 47.0 57.1 44.2 49.3 43.4 101.3 23.1 7.8 35 59.2 46.8 58.2 47.6 57.8 46.5 49.2 44.6 101.8 24.3 8.1	29	58.2	48.5	59.2	46.9	57.5	48.2	54.7	47.4	102.1	26.5	7.6
32 59.3 49.0 58.4 47.3 59.2 49.9 53.5 46.4 102.1 29.7 7.3 33 58.1 48.6 57.9 46.8 57.9 48.5 52.4 44.9 102.3 27.1 7.7 34 54.3 44.4 58.3 47.0 57.1 44.2 49.3 43.4 101.3 23.1 7.8 35 59.2 46.8 58.2 47.6 57.8 46.5 49.2 44.6 101.8 24.3 8.1	30	57.9	48.1	56.4	46.3	57.8	49.4	53.4	47.3	102.2	23.4	7.9
33 58.1 48.6 57.9 46.8 57.9 48.5 52.4 44.9 102.3 27.1 7.7 34 54.3 44.4 58.3 47.0 57.1 44.2 49.3 43.4 101.3 23.1 7.8 35 59.2 46.8 58.2 47.6 57.8 46.5 49.2 44.6 101.8 24.3 8.1	31	58.4	48.6	58.1	47.2	58.1	49.2	54.9	46.9	101.8	24.1	7.5
34 54.3 44.4 58.3 47.0 57.1 44.2 49.3 43.4 101.3 23.1 7.8 35 59.2 46.8 58.2 47.6 57.8 46.5 49.2 44.6 101.8 24.3 8.1	32	59.3	49.0	58.4	47.3	59.2	49.9	53.5	46.4	102.1	29.7	7.3
35 59.2 46.8 58.2 47.6 57.8 46.5 49.2 44.6 101.8 24.3 8.1	33	58.1	48.6	57.9	46.8	57.9	48.5	52.4	44.9	102.3	27.1	7.7
	34	54.3	44.4	58.3	47.0	57.1	44.2	49.3	43.4	101.3	23.1	7.8
36 57.6 44.6 57.6 46.1 57.9 43.6 48.7 41.7 100.2 27.2 7.8	35	59.2	46.8	58.2	47.6	57.8	46.5	49.2	44.6	101.8	24.3	8.1
	36	57.6	44.6	57.6	46.1	57.9	43.6	48.7	41.7	100.2	27.2	7.8

No. 37, Min-Chie Road, Tung Lo Industrial Park, Miao Li, 366 Taiwan, R.O.C. Tel: +886-37-984385 | Fax: +886-37-984770 E-Mail: sales@chardongroup.com

Unit: $m\Omega$

	E-Mail: sales@chardongroup.com										
37	58.3	44.8	57.4	45.9	59.2	44.6	48.2	41.4	101.1	28.0	7.4
38	58.4	45.5	58.2	46.0	59.9	44.8	48.9	42.1	101.0	29.5	7.2
39	58.6	46.7	58.5	48.4	59.6	45.2	48.1	45.1	101.9	27.0	7.5
40	58.2	45.0	56.4	45.0	58.5	44.1	48.5	43.0	101.7	29.0	8.2
41	55.0	43.8	52.9	42.7	58.5	43.2	46.9	45.5	101.9	29.1	7.7
42	56.9	44.9	54.7	44.6	58.3	44.9	47.4	44.4	101.5	30.1	7.4
43	54.6	43.0	51.7	42.1	57.8	43.9	46.1	43.8	101.6	31.2	7.9
44	64.4	49.3	57.2	47.4	58.5	51.4	52.5	48.6	100.1	27.7	8.1
45	63.9	51.9	59.3	49.1	60.4	48.2	53.6	46.4	101.2	26.9	7.7
46	62.5	50.6	58.1	49.6	61.6	47.3	53.1	46.2	102.0	26.5	7.5
47	64.1	52.2	58.7	50.1	59.7	50.4	52.2	46.7	100.5	27.5	7.2
48	61.5	51.8	59.5	49.9	58.8	50.1	54.6	47.6	101.9	27.1	7.6
49	62.4	50.5	58.3	50.8	57.5	50.9	53.2	46.9	102.5	26.9	8.0
50	63.8	52.4	58.1	50.6	56.9	51.8	52.8	48.5	101.3	26.4	7.9
平均	59.1	47.9	57.3	46.9	58.7	47.6	52.5	46.7	101.6	26.6	7.5
Max Temp Delta (Cycle	5.3 (44)	4.9 (43)	5.6 (43)	4.8 (43)	3.0 (46)	4.4 (41)	6.4 (43)	5.3 (37)	100.1 ~ 102.5	21.9 ~ 32.2	7.0 ~ 8.2
Remark	Temp difference does not vary more than 10 °C, meets the requirement of the standard.										

Resistance Measurement

Date	Week #	Roo m Temp	Equalizers-I1 / Bushing Well-I1		Equalizers-I2 / Bushing Well-I2		Equalizers-I3 / Bushing Well-I3		Equalizers-I4 / Bushing Well-I4	
10/17	9	27.3	0.69	0.98%	0.70	1.00%	0.69	0.99%	0.69	0.98%
10/20	20	32.2	0.70	1.00%	0.71	1.01%	0.69	0.99%	0.70	0.99%
10/23	32	29.7	0.70	1.00%	0.70	1.00%	0.71	1.02%	0.71	1.01%
10/25	40	29.0	0.71	1.01%	0.70	1.00%	0.70	1.00%	0.70	0.99%
10/28	50	26.4	0.70	1.00%	0.69	0.98%	0.69	0.99%	0.71	1.01%
A	verage	;	0.7	0.70		70	0.6	96	0.70	02

No. 37, Min-Chie Road, Tung Lo Industrial Park,

Miao Li, 366 Taiwan, R.O.C. Tel: +886-37-984385 | Fax: +886-37-984770

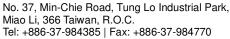
E-Mail: sales@chardongroup.com

Short-time Current 3500A/3 sec

25kV200A Elbow 2014-Oct-17 9th Cycle

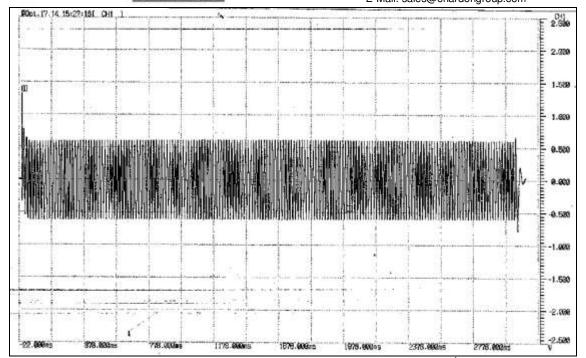
3.5kA/3sec X/R 6

Sample Number	1 st Cycle Current (peak)	1 st Cycle Current (rms)	Current (rms)	Time	Verification	Result
A15&A16	7.61kA	5.38kA	4.47kA	3.05 sec	Normal	PASS
A17&A18	8.2kA	5.8kA	4.17kA	3.05 sec	Normal	PASS

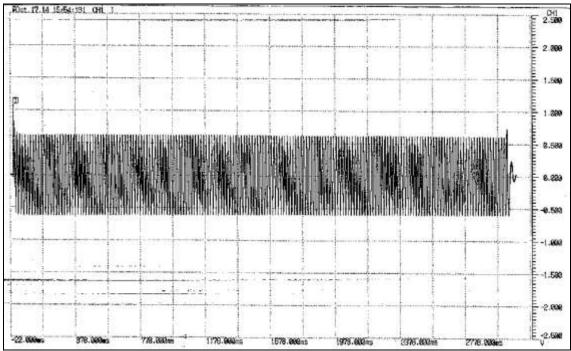

25kV200A Elbow 2014-Oct-21 23rd Cycle 3.5kA/3sec X/R 6

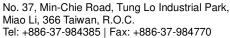
Sample Number	1 st Cycle Current (peak)	1 st Cycle Current (rms)	Current (rms)	Time	Verification	Result
A15&A16	6.86kA	4.85kA	4.21kA	3.09 sec	Normal	PASS
A17&A18	8.43kA	5.96kA	4.23kA	3.07 sec	Normal	PASS

25kV200A Elbow 2014-Oct-25 40th Cycle


3.5kA/3sec X/R 6

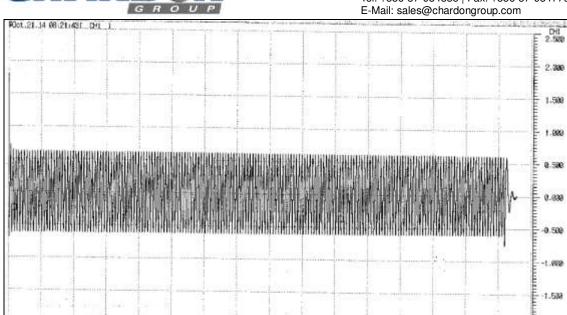
Sample Number	1 st Cycle Current (peak)	1 st Cycle Current (rms)	Current (rms)	Time	Verification	Result
A15&A16	7.32kA	5.17kA	4.1kA	3.07 sec	Normal	PASS
A17&A18	7.61kA	5.38kA	4.15kA	3.08 sec	Normal	PASS




Tel: +886-37-984385 | Fax: +886-37-9 E-Mail: sales@chardongroup.com

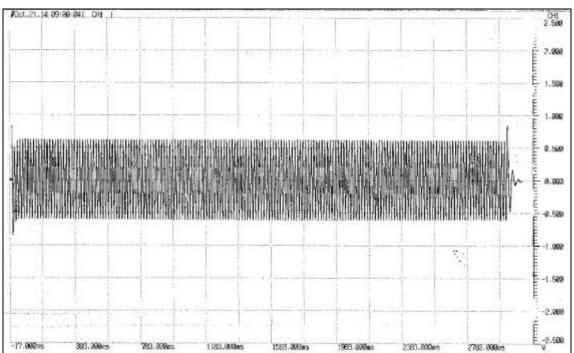
A15&A16 3.5kA/3sec Short-time Current (2014-Oct-17 9th Cycle)

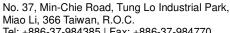


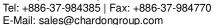

A17&A18 3.5kA/3sec Short-time Current (2014-Oct-17 9th Cycle)

-2.000

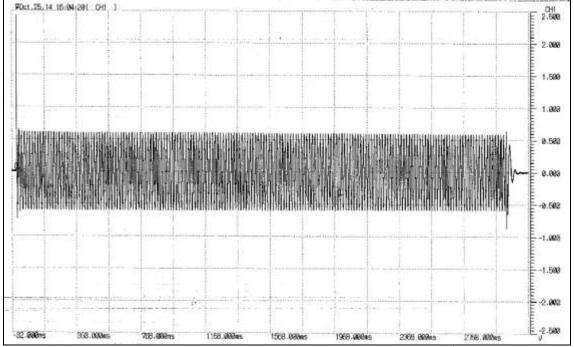
E_2.500



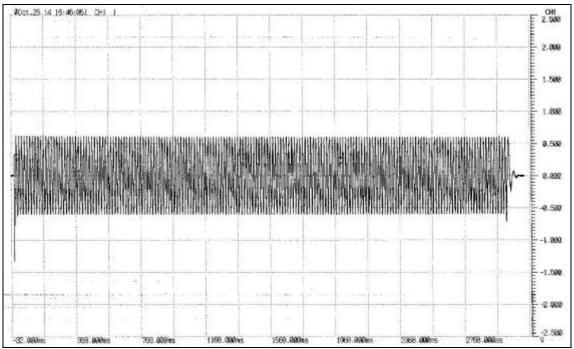

1598 380ms A15&A16 3.5kA/3sec Short-time Current (2014-Oct-21 23rd Cycle)


1996 880mg

2.000ns



A17&A18 3.5kA/3sec Short-time Current (2014-Oct-21 23rd Cycle)



A15&A16 3.5kA/3sec Short-time Current (2014-Oct-21 40th Cycle)

A17&A18 3.5kA/3sec Short-time Current (2014-Oct-21 40th Cycle)

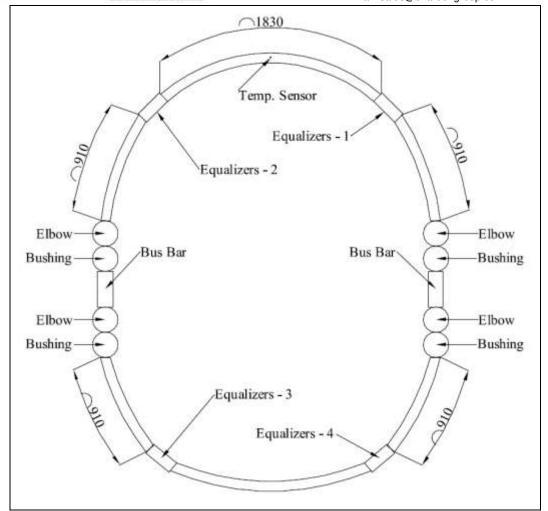



Fig 13-1 Test Setup Diagram

14. Accelerated Sealing Life Test

Object

To verify the connector can maintain a long-tern seal at all interfaces to prevent the entrance of moisture.

Testing Samples and Mating Parts

Elbow CHARDON 25-DE200T 4 PCS

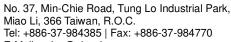
Bushing CHARDON 24-DIB250 4 PCS

Mating Parts

Cable Conductor Type 1/0 AWG(Aluminum)

Cable Insulation Thickness 220 mil

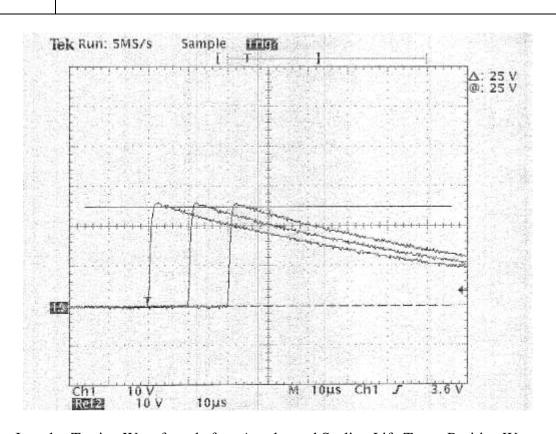
Conductor 200A Bi-Metal Lug

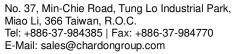

Equalizers Size :

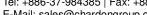
106mm(L)20mm(OD)10.1mm(ID)

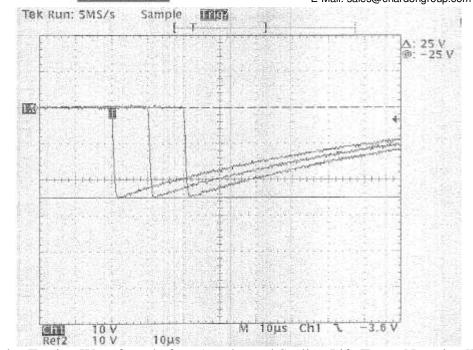
Bushing Bus 356mm(L), 102mm(W),10mm(T)

Procedure

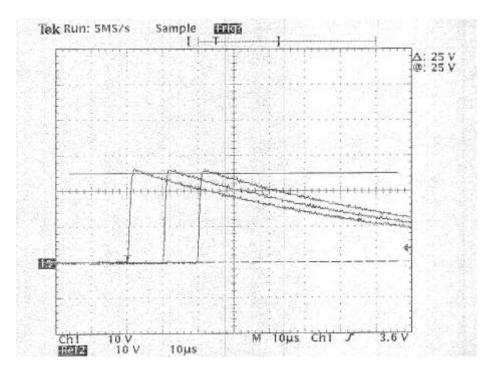

- 1. The four connector assemblies shall be placed in an oven having 121 °C temperature and remain there for three weeks.
- 2. After the time has elapsed, the four samples shall be subjected to 50 cycles of the following sequence of operations: The assemblies shall be heated in air using sufficient current to raise the temperature of the connector of the control cable to 90 °C ± 5 °C for 1 hour.
- 3. The assemblies shall be de-energized and within 3 min, submerged in 25 °C \pm 10 °C conductive water (5000 Ω -cm maximum) to a depth of 30 cm (1 ft) for 1 hour.
- 4. After 50th cycle, the connector and cable assembly shall withstand a design impulse test of IEEE 7.5.3(1.2*50µS impulse wave of 125kV, 3 positive and 3 negative) and test point voltage test.(During the impulse test, the bushing well and bushing bus were soaked into the silicone oil.)

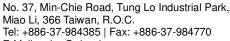

E-Mail: sales@chardongroup.com



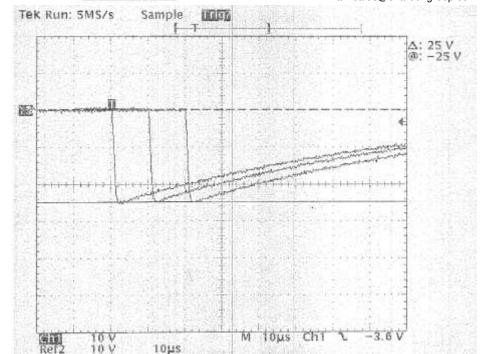

	PD Testing	AC Withstand	Impulse	PD Testing	Test Point			
Sample	Before Acc	Testing Before	Testing Before	After Acc Life	Voltage			
#	Life Sealing	Acc Life	Acc Life	Sealing Test	Testing			
	Test	Sealing Test	Sealing Test					
B1	23kV0.5pC	40kV/1m Pass	+ 1051-X/	11051-37	13.0kV			
B2	23kV0.6pC	40kV/1m Pass	±125kV 3 Shots Each,	±125kV 3 Shots Each, Pass	13.0kV			
В3	23kV0.6pC	40kV/1m Pass	Pass		12.5kV			
B4	23kV0.8pC	40kV/1m Pass	rass	rass	13.0kV			
Remark	 Tested with Bushing Insert and Elbow Assembly Cable Temp: 89.1~91.3°C Water Temp: 29.8~32.9°C Resistance of Water: 3461 Ω-cm Depth of Water: 30 cm Test Point Voltage Testing is applied with 15.0kV 							

Impulse Testing Waveform before Accelerated Sealing Life Test – Positive Wave





CHAR


Impulse Testing Waveform before Accelerated Sealing Life Test – Negative Wave

Impulse Testing Waveform after Accelerated Sealing Life Test – Positive Wave

E-Mail: sales@chardongroup.com

CHAR

Impulse Testing Waveform after Accelerated Sealing Life Test – Negative Wave

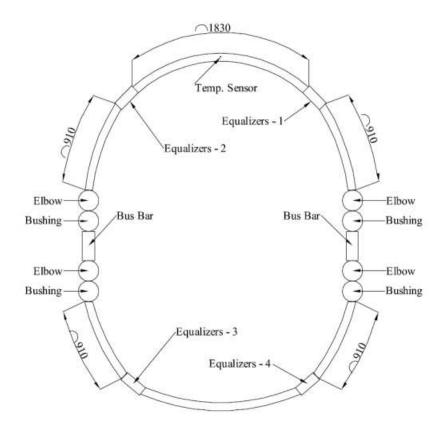


Fig 14-1 Test Setup Diagram

15. Current-cycling test – Thermal Test with Off-axis Operation

Object

The purpose of this test is to demonstrate that loadbreak and deadbreak 200 A connectors can carry rated load current after being subjected to an off-axis operating force. Successful completion of these tests shall be considered as evidence that the connector meets its rating.

Testing Samples

Deadbreak Elbow 25-DE200TC 4 PCS

Mating Parts

Bushing Well Chardon 200A Bushing 4 PCS

Well CH200BW

Cable Conductor Type 1/0 AWG Aluminum Cable

Cable Insulation Thickness 260 mil

Conductor Chardon 200A BiMetal Connector 1/0

Equalizers Size: 106mm(L), 20mm(OD),

10.1mm(ID)

Bushing Bus 356mm(L), 102mm(W), 10mm(T)

Procedure

The purpose of this test is to demonstrate that loadbreak and deadbreak 200 A connectors can carry rated load current after being subjected to on off-axis operating force. Successful completion of these tests shall be considered as evidence that the connector meets its rating.

Each connector shall be subjected to six cycles, each consisting of a mechanical operation as specified in 7.10.2.1 and current cycling as specified in 7.10.2.2. of IEEE 386

The elbow shall be disassembled with a 12.7 mm (0.5 in) wide pulling band, as shown in Figure 21 of IEEE 386 for application of an off-axis force. Grounding tabs or other obstructions may be removed to apply the pulling band. No provision is made for an off-axis closing force since it is not consistently reproducible.

Four connectors shall be assembled in series on AWG No. 1/0 insulated aluminum

E-Mail: sales@chardongroup.com

conductors having a length of 91 cm (36 in). The cable insulation thickness shall be selected according to its voltage class (see Table 10 of IEEE 386).

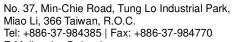
Results

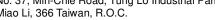
Thermal couple installation areas:

- 1) At the compression lug
- 2) At the midpoint of the bushing contact

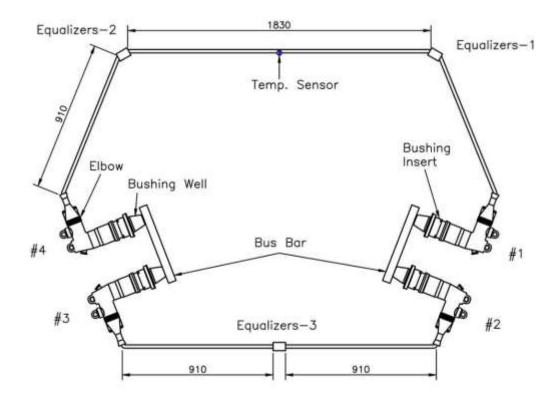
Unit:℃

Cycle#	A	11	A	12	A13		A	14	Control	Room
Cyclen	A11-1	A11-2	A12-1	A12-2	A13-1	A13-2	A14-1	A14-2	Cable	Temp
1	71.8	60,3	63.2	48.5	68.2	52.3	73.3	61.8	89.1	30.0
2	72.3	60.0	63.4	49.9	67.7	51.9	72.4	57.5	90.4	29.6
3	72.5	60.1	65.5	50.4	66.4	51.7	74.2	57.9	90.6	29.0
4	72.4	60.5	66.4	53.1	68.1	53.2	68,6	57.1	90.5	30.6
5	72.4	61.0	66.3	53.0	66.6	53.9	70.5	57.4	90.5	30.0
6	72.6	61.7	66.5	52.7	68.2	53.7	70.7	57.6	90.8	29.4
7	73.1	62.5	66.1	53.5	67.8	53.2	70.8	57.3	90.9	29.0
8	73.3	62.4	65.4	51.7	68.3	53.6	72.3	58.1	90.9	28.8
9	72.7	60.5	61.0	50.2	66.8	50.6	68.7	54.2	90.8	28.1
10	73.3	61.0	61.2	49.7	66.5	50.8	68.1	54.8	91.0	27.5
11	73.1	62.2	62.4	49.3	66.3	50.9	68.5	54.0	91.0	27.4
12	73.6	63.2	63.0	49.5	67.0	52.3	67.7	53.6	91.2	29.2
13	73.5	63.2	63.3	49.1	67.7	52.0	68.0	53.2	91.3	28.4
14	73.2	63.1	63.6	49.2	66.8	51.5	67.3	53.5	91.2	27.8
15	72.9	63.0	64.2	49.6	67.7	51.7	67.0	53.0	90.8	27.0
16	73.6	63.5	65.0	49.9	68.3	52.3	68.7	53.1	90.9	28.0
17	73.7	63.4	64.8	48.9	67.6	51.7	67.7	52.6	91.1	26.7
18	73.4	63.2	64.5	49.1	67.3	51.1	67.1	52.4	90.8	26.6
19	73.9	63.4	65.2	49.9	67.1	51.0	68,0	52.6	90.6	26.3
20	74.2	62.4	63.4	49.2	72.2	53.8	69.5	55.3	91.4	28.6
21	74.3	61.7	62.9	49.6	72.0	55.4	70.2	57.4	89.8	27.8
22	74.2	62.0	63.3	49.9	72.1	57.1	71.3	57.8	89.3	27.1
23	74.5	63.1	64.5	50.2	71.5	57.1	73.2	58.0	88.9	26.6
24	73.4	63.2	65.0	51.2	72.3	59.2	72.7	59.1	89.1	29.1
25	73.1	62.7	65.1	50.5	74.0	58.4	74.7	60.2	89.1	27.5
26	73.9	62.9	65.2	51.4	74.2	58.2	74.8	60.3	89.1	26,3




E-Mail: sales@chardongroup.com

				•		L-IVIA	ii. sales@cii	ardongroup.	COIII	
27	73.7	62.5	65.3	51.2	74.6	58.8	75.2	60.5	89.1	26.0
28	73.8	62.3	64.8	49.4	72.2	57.7	76.5	61.3	89.1	28.6
29	72.6	62.1	63.9	50.6	73.1	58.0	76.2	61.0	89.0	28.2
30	73.1	62.7	65.1	51.5	74.1	58.2	76.1	60.7	89.1	27.6
31	73.0	62.4	64.8	52.0	75.2	59.3	75.4	60.2	88.8	26.1
32	73.2	62.5	63.7	51.3	76.3	60.1	75.3	58.6	89.1	29.2
33	74.0	62.8	63.5	51.6	77.7	60.5	76.0	57.3	89.3	28.0
34	73.7	63.2	63.2	51.3	76.8	60.2	75.2	57.8	89.5	26.6
35	73.6	62.8	63.0	51.0	76.3	60.6	76.0	56.2	89.5	26.0
36	73.4	62.8	62.7	50.7	76.0	59.2	76.2	57.4	90.4	29.2
37	73.1	62.2	62.5	50.6	75.7	59.4	76.1	57.2	89.7	27.8
38	73.9	62.4	62.6	50.3	75.3	59.4	75.3	56.7	89.0	26.7
39	73.4	62.0	62.2	50.4	76.2	59.6	75.1	56.2	89.0	26.0
40	72.6	62.8	62.7	51.3	75.7	59.2	74.3	56.0	89.1	29.0
41	72.5	63.0	62.8	51.5	75.1	59.0	74.5	55.6	89.1	28.2
42	73.0	63.6	63.2	51.5	76.1	59.5	74.1	56.7	89.0	28.1
43	73.1	63.9	63.5	51.6	77.1	60.2	75.0	56.6	89.1	26.8
44	72.6	64.0	63.6	52.0	76.6	60.4	74.6	57.3	89.2	26.2
45	73.5	63.8	64.1	52.5	76.2	59.6	75.9	57.9	88.9	29.5
46	74.4	64.0	64.7	52.6	76.0	59.2	75.1	56.8	89.1	28.1
47	74.6	64.2	64.7	52.7	77.1	60.3	75.3	57.7	89.2	28.3
48	75.1	64.8	65.3	53.4	77.3	60.0	75.1	60.3	89.5	30.2
Ave.	73.4	61.3	64.0	50.8	72.0	56.2	69.7	57.0	89.9	27.4
	After six avales the average temperatures of each thermal counts are not higher than									


After six cycles, the average temperatures of each thermal couple are not higher than control cable temperature.

Remark

E-Mail: sales@chardongroup.com

CHARE

Fig 15-1 Current Cycling Test Setup

E-Mail: sales@chardongroup.com

APPENDIX - External Test Report

Powertech Labs Inc. • 12388 - 88th Avenue, Surrey, B.C. Canada • V3W 7R7

Test Report № PL-26015B

The tests were performed in accordance with IEEE Standard 592-2007, section 4.3

Project №:	PL-26015	Test Date:	13 September 2013					
Tested equipment:	Corporation, prefa-	ulated Connectors ma ulted in accordance w ples were numbered b	nufactured by Chardon Taiwan ith IEEE Standard 592-2007, y the client.					
Voltage rating:	15.2 kV _{phase-to-ground}	i						
Test voltage:	11.7 kV _{phase-to-ground}	1						
Test current:	10 kA _{rms}							
Markings:	Elbow- Chardon, 15.2/26.3 kV, 200A Load Break							
	Cable- TPC. 25 kV	/ 1/C #1AWG CU, X	LPE 260 mils					
Tests performed:		ation Tests per Section subjected to two curre	n 4.3. nt pulses at 10 kA _{rms} , 10 cycles.					
Test results:	All tested samples	passed the tests.						
Remarks:	Identification of the tested Connectors was based on the markings on to samples. The samples were supplied already prefaulted.							

Tested by:

Reviewed by:

K.Tabarrate M.A.SC., EIT Electrical Engineer, High Power Lab

T. Stefanski M.Sc., P. Eng. Head of High Power Lab

This report shall not be reproduced except in full, without the written approval of Powertech Labs Inc.

Test Report #PL-26015B

Page 2 of 18